Freva python module#

The following section gives an overview over the usage of the Freva python module. This section assumes that you know how to get to access to the python environment that has Freva installed. If this is not the case please contact one of your Freva admins or the Frequently Asked Questions section for help.

Searching for data#

To query data databrowser and search for data you have three different options. You can the to following methods

  • freva.databrowser(): The main method for searching data is the freva.databrowser() method. The data browser method lets you search for data files or uris (Uniform Resource Identifier). Uris instead of file paths are useful because an uri indicates the storage system where the files are located.

  • freva.facet_search(): This method lists all search categories (facets) and their values.

  • freva.count_values(): You can count the occurrences of search results with this method.

Below you can find a more detailed documentation.

freva.count_values(*, time: str = '', time_select: Literal['strict', 'flexible', 'file'] = 'flexible', multiversion: bool = False, facet: str | list[str] | None = None, **search_facets: str | list[str] | int) int | dict[str, dict[str, int]]#

Count the number of found objects in the databrowser.

Parameters:
  • time (str, default: "") – Special search facet to refine/subset search results by time. This can be a string representation of a time range or a single time step. The time steps have to follow ISO-8601. Valid strings are %Y-%m-%dT%H:%M to %Y-%m-%dT%H:%M for time ranges and %Y-%m-%dT%H:%M. Note: You don’t have to give the full string format to subset time steps %Y, %Y-%m etc are also valid.

  • time_select (str, default: flexible) – Operator that specifies how the time period is selected. Choose from flexible (default), strict or file. strict returns only those files that have the entire time period covered. The time search 2000 to 2012 will not select files containing data from 2010 to 2020 with the strict method. flexible will select those files as flexible returns those files that have either start or end period covered. file will only return files where the entire time period is contained within one single file.

  • multiversion (bool, default: False) – Select all versions and not just the latest version (default).

  • facet (Union[str, list[str]], default: None) – Count these these facets (attributes & values) instead of the number of total files. If None (default), the number of total files will be returned.

  • **search_facets (str) – The facets to be applied in the data search. If not given the whole dataset will be queried.

Returns:

Number of found objects, if the facet key is/are given then the a dictionary with the number of objects for each search facet/key is given.

Return type:

int, dict[str, int]

Example

Code

import freva
num_files = freva.count_values(experiment="cmorph")
print(num_files)

Results

24

Code

import freva
print(freva.count_values(facet="*"))

Results

{'time_frequency': {'1day': 10, '30min': 24, '3hr': 2, 'mon': 3}, 'product': {'cmip': 2, 'eur-11': 12, 'grid': 24, 'reanalysis': 1}, 'project': {'cmip6': 2, 'cordex': 12, 'observations': 24, 'reanalysis': 1}, 'fs_type': {'posix': 39}, 'model': {'access-cm2': 1, 'cpc': 24, 'mpi-esm1-2-lr': 1, 'mpi-m-mpi-esm-lr-clmcom-cclm4-8-17-v1': 10, 'ncc-noresm1-m-gerics-remo2015-v1': 2, 'nodc': 1}, 'ensemble': {'r1i1p1': 37, 'r1i1p1f1': 1, 'r2i1p1f1': 1}, 'time_aggregation': {'mean': 39}, 'variable': {'hc700': 1, 'pr': 26, 'tas': 10, 'ua': 2}, 'experiment': {'amip': 2, 'cmorph': 24, 'historical': 10, 'oc5': 1, 'rcp85': 2}, 'future_id': {}, 'grid_label': {'gn': 39}, 'realm': {'atmos': 38, 'ocean': 1}, 'future': {}, 'cmor_table': {'30min': 24, '3hr': 2, 'aday': 10, 'amon': 2, 'omon': 1}, 'bbox': {}, 'institute': {'clmcom': 10, 'cpc': 24, 'csiro-arccss': 1, 'gerics': 2, 'mpi-m': 1, 'noaa': 1}}
freva.databrowser(*, multiversion: bool = False, batch_size: int = 5000, uniq_key: Literal['file', 'uri'] = 'file', time: str = '', time_select: Literal['flexible', 'strict', 'file'] = 'flexible', **search_facets: str | list[str] | int) dict[str, dict[str, int]] | dict[str, list[str]] | Iterator[str] | int#

Find data in the system.

You can either search for files or data facets (variable, model, …) that are available. The query is of the form key=value. <value> might use *, ? as wildcards or any regular expression.

Parameters:
  • **search_facets (Union[str, Path, in, list[str]]) – The facets to be applied in the data search. If not given the whole dataset will be queried.

  • time (str) – Special search facet to refine/subset search results by time. This can be a string representation of a time range or a single time step. The time steps have to follow ISO-8601. Valid strings are %Y-%m-%dT%H:%M to %Y-%m-%dT%H:%M for time ranges and %Y-%m-%dT%H:%M. Note: You don’t have to give the full string format to subset time steps %Y, %Y-%m etc are also valid.

  • time_select (str, default: flexible) – Operator that specifies how the time period is selected. Choose from flexible (default), strict or file. strict returns only those files that have the entire time period covered. The time search 2000 to 2012 will not select files containing data from 2010 to 2020 with the strict method. flexible will select those files as flexible returns those files that have either start or end period covered. file will only return files where the entire time period is contained within one single file.

  • uniq_key (str, default: file) – Chose if the solr search query should return paths to files or uris, uris will have the file path along with protocol of the storage system. Uris can be useful if the the search query result should be used libraries like fsspec.

  • multiversion (bool, default: False) – Select all versions and not just the latest version (default).

  • batch_size (int, default: 5000) – Size of the search query.

Returns:

If all_facets is False and facet is None an iterator with results.

Return type:

Iterator

Example

Search for files in the system:

Code

import freva
files = freva.databrowser(project='obs*', institute='cpc',
                          time_frequency='??min',
                          variable='pr')
print(files)
print(next(files))
for file in files:
    print(file)
    break

Results

<generator object SolrFindFiles._search at 0x7f1ec681f0d0>
/home/runner/work/freva/freva/.docker/data/observations/grid/CPC/CPC/cmorph/30min/atmos/30min/r1i1p1/v20210618/pr/pr_30min_CPC_cmorph_r1i1p1_201609022300-201609022330.nc
/home/runner/work/freva/freva/.docker/data/observations/grid/CPC/CPC/cmorph/30min/atmos/30min/r1i1p1/v20210618/pr/pr_30min_CPC_cmorph_r1i1p1_201609022200-201609022230.nc

Search for files between a two given time steps:

Code

import freva
file_range = freva.databrowser(project="obs*", time="2016-09-02T22:15 to 2016-10")
for file in file_range:
    print(file)

Results

/home/runner/work/freva/freva/.docker/data/observations/grid/CPC/CPC/cmorph/30min/atmos/30min/r1i1p1/v20210618/pr/pr_30min_CPC_cmorph_r1i1p1_201609022300-201609022330.nc
/home/runner/work/freva/freva/.docker/data/observations/grid/CPC/CPC/cmorph/30min/atmos/30min/r1i1p1/v20210618/pr/pr_30min_CPC_cmorph_r1i1p1_201609022200-201609022230.nc

The default method for selecting time periods is flexible, which means all files are selected that cover at least start or end date. The strict method implies that the entire search time period has to be covered by the files. Using the strict method in the example above would only yield one file because the first file contains time steps prior to the start of the time period:

Code

import freva
file_range = freva.databrowser(project="obs*", time="2016-09-02T22:15 to 2016-10", time_select="strict")
for file in file_range:
    print(file)

Results

/home/runner/work/freva/freva/.docker/data/observations/grid/CPC/CPC/cmorph/30min/atmos/30min/r1i1p1/v20210618/pr/pr_30min_CPC_cmorph_r1i1p1_201609022300-201609022330.nc

Search for data attributes (facets) in the databrowser.

The method queries the databrowser for available search facets (keys) like model, experiment etc.

Parameters:
  • time (str) – Special search facet to refine/subset search results by time. This can be a string representation of a time range or a single time step. The time steps have to follow ISO-8601. Valid strings are %Y-%m-%dT%H:%M to %Y-%m-%dT%H:%M for time ranges and %Y-%m-%dT%H:%M. Note: You don’t have to give the full string format to subset time steps %Y, %Y-%m etc are also valid.

  • time_select (str, default: flexible) – Operator that specifies how the time period is selected. Choose from flexible (default), strict or file. strict returns only those files that have the entire time period covered. The time search 2000 to 2012 will not select files containing data from 2010 to 2020 with the strict method. flexible will select those files as flexible returns those files that have either start or end period covered. file will only return files where the entire time period is contained within one single file.

  • facet (Union[str, list[str]], default: None) – Retrieve information about these facets (attributes & values). If None given (default), information about all available facets is returned.

  • multiversion (bool, default: False) – Select all versions and not just the latest version (default).

  • **search_facets (str) – The facets to be applied in the data search. If not given the whole dataset will be queried.

Returns:

Dictionary with a list search facet values for each search facet key.

Return type:

dict[str, list[str]]

Example

Code

import freva
all_facets = freva.facet_search(project='obs*')
print(all_facets)
spec_facets = freva.facet_search(project='obs*',
                                 facet=["time_frequency", "variable"])
print(spec_facets)

Results

{'time_frequency': ['30min'], 'product': ['grid'], 'project': ['observations'], 'fs_type': ['posix'], 'model': ['cpc'], 'ensemble': ['r1i1p1'], 'time_aggregation': ['mean'], 'variable': ['pr'], 'experiment': ['cmorph'], 'future_id': [], 'grid_label': ['gn'], 'realm': ['atmos'], 'future': [], 'cmor_table': ['30min'], 'bbox': [], 'institute': ['cpc']}
{'time_frequency': ['30min'], 'variable': ['pr']}

Get all models that have a given time step:

Code

import freva
model = list(freva.facet_search(project="obs*", time="2016-09-02T22:10"))
print(model)

Results

['time_frequency', 'product', 'project', 'fs_type', 'model', 'ensemble', 'time_aggregation', 'variable', 'experiment', 'future_id', 'grid_label', 'realm', 'future', 'cmor_table', 'bbox', 'institute']

Reverse search: retrieving meta data from a known file.

Code

import os, freva
file = "../.docker/data/observations/grid/CPC/CPC/cmorph/30min/atmos/30min/r1i1p1/v20210618/pr/pr_30min_CPC_cmorph_r1i1p1_201609020000-201609020030.nc"
res = freva.facet_search(file=str(os.path.abspath(file)))
print(res)

Results

{'time_frequency': ['30min'], 'product': ['grid'], 'project': ['observations'], 'fs_type': ['posix'], 'model': ['cpc'], 'ensemble': ['r1i1p1'], 'time_aggregation': ['mean'], 'variable': ['pr'], 'experiment': ['cmorph'], 'future_id': [], 'grid_label': ['gn'], 'realm': ['atmos'], 'future': [], 'cmor_table': ['30min'], 'bbox': [], 'institute': ['cpc']}

Running analysis plugins#

Already defined data analysis tools can be started with the freva.run_plugin() method. Besides the freva.run_plugin() method three more utility methods (freva.list_plugins(), freva.get_tools_list(), freva.plugin_doc()) are available to get an overview over existing plugins and the documentation of each plugins.

freva.get_tools_list() HelpStr#

Get a list of plugins with their short description.

Returns:

String representation of all available plugins.

Return type:

str

Example

Code

import freva
import rich
rich.print(freva.get_tools_list())

Results

┏━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Tool               ┃ Description                          ┃
┡━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ Animator           │ Animate data on lon/lat grids        │
│ DummyPlugin        │ A dummy plugin                       │
│ DummyPluginFolders │ A dummy plugin with outputdir folder │
└────────────────────┴──────────────────────────────────────┘
freva.list_plugins() list[str]#

Get the plugins that are available on the system.

Returns:

List of available Freva plugins.

Return type:

list[str]

Example

Code

import freva
import rich
rich.print(freva.list_plugins())

Results

['dummyplugin', 'dummypluginfolders', 'animator']
freva.plugin_doc(tool_name: str | None) HelpStr#

Display the documentation of a given plugin.

Parameters:

tool_name – The name of the tool that should be documented.

Returns:

plugin help string.

Return type:

str

Raises:

PluginNotFoundError: – if the plugin name does not exist.

Example

Code

import freva
import rich
rich.print(freva.plugin_doc("animator"))

Results

Animator (v2022.7.15): Create animations (in gif or mp4 format) This tool       
creates plots of solr facets and an animation.                                  
┏━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┓
┃ Option                  ┃ Description                                        ┃
┡━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┩
│ input_file              │ NetCDF input file(s), you can choose multiple      │
│                         │ files separated by a , or use a global pattern for │
│                         │ multiple files chose this option only if you don't │
│                         │ want Freva to find files by seach facets (default: │
│                         │ <null>)                                            │
│ variable                │ Variable name (only applicable if you didn't       │
│                         │ choose an input file) (default: <null>)            │
│ project                 │ Project name (only applicable if you didn't choose │
│                         │ an input file) (default: <null>)                   │
│ product                 │ Product name (only applicable if you didn't choose │
│                         │ an input file) (default: <null>)                   │
│ experiment              │ Experiment name (only applicable if you didn't     │
│                         │ choose an input file) (default: <null>)            │
│ institute               │ Institute name (only applicable if you didn't      │
│                         │ choose an input file) (default: <null>)            │
│ model                   │ Model name (only applicable if you didn't choose   │
│                         │ an input file) (default: <null>)                   │
│ time_frequency          │ Time frequency name (only applicable if you didn't │
│                         │ choose an input file) (default: <null>)            │
│ ensemble                │ Ensemble name (only applicable if you didn't       │
│                         │ choose an input file) (default: <null>)            │
│ start                   │ Define the first time step to be plotted, leave    │
│                         │ blank if taken from data (default: <null>)         │
│ end                     │ Define the last time step to be plotted, leave     │
│                         │ blank if taken from data (default: <null>)         │
│ time_mean               │ Select a time interval if time                     │
│                         │ averaging/min/max/sum should be applied along the  │
│                         │ time axis. This can be D for daily, M for monthly  │
│                         │ 6H for 6 hours etc. Leave blank if the time axis   │
│                         │ should not be resampled (default) or set to        │
│                         │ <em>all</em> if you want to collapse the time      │
│                         │ axis. (default: <null>)                            │
│ time_method             │ If resampling of the time axis is chosen (default: │
│                         │ no) set the method: mean, max or min. <b>Note:</b> │
│                         │ This has only an effect if the above parameter for │
│                         │ <em>time_mean</em> is set. (default: mean)         │
│ lonlatbox               │ Set the extend of a rectangular lonlatbox          │
│                         │ (left_lon, right_lon, lower_lat, upper_lat)        │
│                         │ (default: <null>)                                  │
│ output_unit             │ Set the output unit of the variable - leave blank  │
│                         │ for no conversion. This can be useful if the unit  │
│                         │ of the input files should be converted, for        │
│                         │ example for precipitation. Note: Although many     │
│                         │ conversions are supported, by using the `pint`     │
│                         │ conversion library. (default: <null>)              │
│ vmin                    │ Set the minimum plotting range (leave blank to     │
│                         │ calculate from data 1st decile) (default: <null>)  │
│ vmax                    │ Set the maximum plotting range (leave blank to     │
│                         │ calculate the 9th decile) (default: <null>)        │
│ cmap                    │ Set the colormap, more information on colormaps is │
│                         │ available on the <a                                │
│                         │ href="https://matplotlib.org/stable/tutorials/colo │
│                         │ rs/colormaps.html" target=_blank>matplotlib        │
│                         │ website</a>. (default: RdYlBu_r)                   │
│ linecolor               │ Color of the coast lines in the map (default: k)   │
│ projection              │ Set the global map projection. Note: this should   │
│                         │ the name of the cartopy projection method (e.g     │
│                         │ PlatteCarree for Cylindrical Projection). Pleas    │
│                         │ refer to <a                                        │
│                         │ href="https://scitools.org.uk/cartopy/docs/latest/ │
│                         │ crs/projections.html"target=_blank>cartopy         │
│                         │ website</a> for details. (default: PlateCarree)    │
│ proj_centre             │ Set center longitude of the global map projection. │
│                         │ (default: 50)                                      │
│ pic_size                │ Set the size of the picture (in pixel) (default:   │
│                         │ 1360,900)                                          │
│ plot_title              │ Set plot title (default: )                         │
│ cbar_label              │ Overwrite default colorbar label by this value     │
│                         │ (default: )                                        │
│ suffix                  │ Filetype of the animation (default: mp4)           │
│ fps                     │ Set the frames per seceonds of the output          │
│                         │ animation. (default: 5)                            │
│ extra_scheduler_options │ Set additional options for the job submission to   │
│                         │ the workload manager (, separated). Note:          │
│                         │ batchmode and web only. (default: --qos=test,      │
│                         │ --array=20)                                        │
└─────────────────────────┴────────────────────────────────────────────────────┘
freva.run_plugin(tool_name: str, *, save: bool = False, save_config: str | Path | None = None, show_config: bool = False, scheduled_id: int | None = None, unique_output: bool = True, batchmode: bool = False, caption: str = '', tag: str | None = None, **options: str | float | int | bool) PluginStatus#

Apply an available data analysis plugin.

Parameters:
  • tool_name – The name of the plugin that is to be applied.

  • caption – Set a caption for the results.

  • save – Save the plugin configuration to default destination.

  • save_config – Save the plugin configuration.

  • scheduled_id – Run a scheduled job from database

  • batchmode – Create a Batch job and submit it to the scheduling system.

  • unique_output – Append a Freva run id to the output/cache folder(s).

  • tag – Use git commit hash to specify a specific version of this tool.

Returns:

Return code, and the return value of the plugin.

Return type:

tuple

Example

Run a plugin in the foreground.

Code

import freva
res = freva.run_plugin("animator", variable="pr", project="obs*")
output = res.get_result_paths("plot", "*.*") # Check the plot output

Results

/tmp/animator/run.py:91: SyntaxWarning: invalid escape sequence '\d'
  for i in re.findall("[-\d]+", unit[n]):
Setp 1: Collecting all files
Step 2: Opening the netcdf-files, collecting metadata
Step 3: Converting Units
Step 4: Loading the dataset, getting min/max values
Step 5: Creating the animation
/tmp/animator/run.py:91: SyntaxWarning: invalid escape sequence '\d'
  for i in re.findall("[-\d]+", unit[n]):
Created animation /tmp/eval_conf/work/runner/freva-ces/output/animator/2117/pr_20160902T0000-20160902T2330.mp4 in 39 seconds

Run a plugin in the background. You can interact with the plugin using the .wait method of the :py:class:freva.PluginStatus class.

Code

import freva
res = freva.run_plugin("animator",
                       variable="pr",
                       project="observations",
                       batchmode=True)
res.wait() # Wait until the plugin has finished

Results

Scheduled job with history id: 2118
You can view the job's status with the command squeue
Your job's progress will be shown with the command
tail -f /tmp/share/slurm/animator/Animator-3312.out
☀️  Waiting for plugin to finish... ok

This specific plugin has created the following output:

_images/animator_output.gif

After the application of a data analysis plugin you can check the status of the plugin and make use of any of the plugin output either by directly using the return value of the freva.run_plugin() method or create an instance of the freva.PluginStatus status class with help of a history id.

class freva.PluginStatus(history_id: int)#

Bases: object

A class to interact with the status of a plugin application.

With help of this class you can:

  • Check if a plugin is still running.

  • Get all results (data or plot files) of a plugin.

  • Check the configuration of a plugin.

  • Wait until the plugin is finished.

Example

The output of the freva.run_plugin method is an instance of the PluginStatus class. That means you can directly use the output of :py:meth:freva.run_plugin to interact with the plugin status:

Code

import freva
res = freva.run_plugin("dummypluginfolders")
print(res.status)

Results

Processing output in /tmp/eval_conf/work/runner/freva-ces/output/dummypluginfolders/20250103_050217/2119
finished

You can also create an instance of the class yourself, if you know the history_id of a specific plugin run. Note that you can query these ids by making use of the :py:meth:freva.history method:

Code

import freva
# Get the last run of the dummypluginfolders plugin
hist = freva.history(plugin="dummypluginfolders", limit=1)[:-1]
res = freva.PluginStatus(hist["id"])
print(res.status)

Results

[05:02:17] INFO     freva - INFO - history of {plugin}, limit=1, since=None,    
                    until=None, entry_ids=None                                  
property batch_id: int | None#

Get the id of the batch job, if the plugin was a batchmode job.

property configuration: Dict[str, Any]#

Get the plugin configuration.

get_result_paths(dtype: Literal['data', 'plot'] = 'data', glob_pattern: str = '*.nc') List[Path]#

Get all created paths of a certain data type.

This method allows you to query all output files of the plugin run. You can either search for data files or plotted output.

Parameters:
  • dtype (str) – The data type of the returned paths. This should be either data or plot.

  • glob_pattern (str, default: *.nc) – Refine the output by filtering the returned files by the given glob pattern. By default only netCDF files (”*.nc”) are added to the list.

Returns:

List[Path]

Return type:

A list of paths matching the search constrains.

Example

We are going to use a plugin called dummypluginfolders which creates plots and netCDF files. In this example we want to open all netCDF files (dtype = 'data') that match the filename constraint *data.nc.

Code

import freva
import xarray as xr
res = freva.run_plugin("dummypluginfolders", variable="pr")
dset = xr.open_mfdataset(
    res.get_result_paths(dtype="data", glob_pattern="*data.nc")
)
print(dset.attrs["variable"])

Results

Processing output in /tmp/eval_conf/work/runner/freva-ces/output/dummypluginfolders/20250103_050217/2120
pr
property job_script: str#

Get the content of the job_script, if it was a batchmode job.

kill() None#

Kill a running batch job.

This method has only affect on jobs there have been submitted using the batchmode=True flag.

property plugin: str#

Get the plugin name.

property status: str#

Get the state of the current plugin run.

property stdout: str#

Get the stdout of the plugin.

Example

Read the output of the plugin:

Code

import freva
res = freva.run_plugin("dummypluginfolders")
print(res.stdout)

Results

Processing output in /tmp/eval_conf/work/runner/freva-ces/output/dummypluginfolders/20250103_050218/2121
Processing output in /tmp/eval_conf/work/runner/freva-ces/output/dummypluginfolders/20250103_050218/2121

property version: Tuple[int, int, int]#

Get the version of the plugin.

wait(timeout: float | int = 28800) None#

Wait for a plugin to finish.

This method will block until the plugin is running.

Parameters:

timeout (int, default: 28800) – Wait timeout seconds for the plugin to finish. If the plugin hasn’t been finish raise a ValueError.

Raises:

ValueError – If the plugin took longer than timeout seconds to finish.:

Example

This can be useful if a plugin was started using the batchmode=True option and the execution of the code should wait until the plugin is finished.

Code

import freva
res = freva.run_plugin("dummypluginfolders", batchmode=True)
res.wait(timeout=60) # Give the plugin 60 seconds to finish.

Results

Scheduled job with history id: 2122
You can view the job's status with the command squeue
Your job's progress will be shown with the command
tail -f /tmp/share/slurm/dummypluginfolders/DummyPluginFolders-3491.out
☀️  Waiting for plugin to finish... ok

Accessing the previous plugin runs#

freva.history(*args: str, limit: int = 10, plugin: str | None = None, since: str | None = None, until: str | None = None, entry_ids: int | list[int] | None = None, full_text: bool = False, return_results: bool = False, return_command: bool = False, _return_dict: bool = True, user_name: str | None = None) list[Any] | dict[str, Any]#

Get access to the configurations of previously applied freva plugins.

The .history method displays the entries with a one-line compact description. The first number you see is the entry id, which you might use to select single entries.

Parameters:
  • limit (int, default: 10) – Limit the number of entries to be displayed.

  • plugin (str, default: None) – Display only entries from a given plugin name.

  • since (str, datetime.datetime, default: None) – Retrieve entries older than date, see hint on date format below.

  • until (str, datetime.datetime, default: None) – Retrieve entries younger than date, see hint on date format below.

  • entry_ids (list, default: None) – Select entries whose ids are in “ids”.

  • full_text (bool, default: False) – Show the complete configuration.

  • return_results (bool, default: False) – Also return the plugin results.

  • return_command (bool, default: False) – Return the commands instead of history objects.

  • user_name (str, default: None) – Select entries belonging to another user (e.g., user_name=”<username>”) or all users (all or *).

  • _return_dict (bool, default: True) – Return a dictionary representation, this is only for internal use.

Returns:

freva plugin history

Return type:

list

Example

Get the last three history entries:

Code

import freva
hist = freva.history(limit=3)
print(type(hist), len(hist))
print(hist[-1].keys())
config = hist[-1]['configuration']
print(config)

Results

<class 'list'> 3
dict_keys(['status_dict', 'id', 'timestamp', 'tool', 'version', 'version_details_id', 'configuration', 'slurm_output', 'host', 'uid_id', 'status', 'flag', 'caption', 'result'])
{'variable': 'pr', 'outputdir': '/tmp/eval_conf/work/runner/freva-ces/output/dummypluginfolders/20250103_050217'}
[05:02:19] INFO     freva - INFO - history, limit=3, since=None, until=None,    
                    entry_ids=None                                              

Hint

Date Format Dates are given in the ISO-8601 format and can be “YYYY-MM-DDTHH:mm:ss.n” or any less accurate subset. These are all valid: “2012-02-01T10:08:32.1233431”, “2012-02-01T10:08:32”, “2012-02-01T10:08”, “2012-02-01T10”, “2012-02-01”, “2012-02”, “2012”. Missing values are assumed to be the minimal allowed value. For example: “2012” = “2012-01-01T00:00:00.0”

The UserData class#

class freva.UserData#

Bases: object

Data class that handles user data requests. With help of this class users can add their own data to the databrowser, (re)-index data in the databrowser or delete data in the databrowser.

add(product: str, *paths: PathLike, how: str = 'copy', override: bool = False, **defaults: str) None#

Add custom user files to the databrowser.

To be able to add data to the databrowser the file names must follow a strict standard and the files must reside in a specific location. This add method takes care about the correct file naming and location. No pre requirements other than the file has to be a valid netCDF or grib file are assumed. In other words this method places the user data with the correct naming structure to the correct location.

Parameters:
  • product (str) – Product search key the newly added data can be found.

  • *paths (os.PathLike) – Filename(s) or Directories that are going to be added to the databrowser. The files will be added into the central user directory and named according the CMOR standard. This ensures that the data can be added into the databrowser. Note: Once the data has been added into the databrowser it can be found via the user-<username> project.

  • how (str, default: copy) – Method of how the data is added into the central freva user directory. Default is copy, which means your data files will be replicated. To avoid a this redundancy you can set the how keyword to symlink for symbolic links or link for creating hard links to create symbolic links or move to move the data into the central user directory entirely.

  • override (bool, default: False) – Replace existing files in the user data structure.

  • experiment (str, default: None) – By default the method tries to deduce the experiment information from the metadata. To overwrite this information the experiment keyword should be set.

  • institute (str, default: None) – By default the method tries to deduce the institute information from the metadata. To overwrite this information the institute keyword should be set.

  • model (str, default: None) – By default the method tries to deduce the model information from the metadata. To overwrite this information the model keyword should be set.

  • variable (str, default: None) – By default the method tries to deduce the variable information from the metadata. To overwrite this information the variable keyword should be set.

  • time_frequency (str, default: None) – By default the method tries to deduce the time_frequency information from the metadata. To overwrite this information the time_frequency keyword should be set.

  • ensemble (str, default: None) – By default the method tries to deduce the ensemble information from the metadata. To overwrite this information the ensemble keyword should be set.

Raises:

ValueError – If metadata is insufficient, or product key is empty.:

Example

Suppose you’ve gotten data from somewhere and want to add this data into the databrowser to make it accessible to others. In this specific example we assume that you have stored your original data in the /tmp/my_awesome_data folder. E.g /tmp/my_awesome_data/outfile_0.nc...tmp/my_awesome_data/outfile_9.nc The routine will try to gather all necessary metadata from the files. You’ll have to provide additional metadata if mandatory keywords are missing. To make the routine work you’ll have to provide the institute, model and experiment keywords:

Code

from freva import UserData, databrowser
user_data = UserData()
# You can also provide wild cards to search for data
user_data.add("eur-11b", "/tmp/my_awesome_data/outfile_?.nc",
                  institute="clex", model="UM-RA2T",
                  experiment="Bias-correct")
# Check the databrowser if the data has been added
for file in databrowser(experiment="bias*"):
    print(file)

Results

Status: crawling ...ok
/tmp/user_data/user-runner/eur-11b/clex/UM-RA2T/Bias-correct/hr/user_data/hr/r0i0p0/v20250103/tas/tas_hr_UM-RA2T_Bias-correct_r0i0p0_197001041800-197001050300.nc
/tmp/user_data/user-runner/eur-11b/clex/UM-RA2T/Bias-correct/hr/user_data/hr/r0i0p0/v20250103/tas/tas_hr_UM-RA2T_Bias-correct_r0i0p0_197001040800-197001041700.nc
/tmp/user_data/user-runner/eur-11b/clex/UM-RA2T/Bias-correct/hr/user_data/hr/r0i0p0/v20250103/tas/tas_hr_UM-RA2T_Bias-correct_r0i0p0_197001032200-197001040700.nc
/tmp/user_data/user-runner/eur-11b/clex/UM-RA2T/Bias-correct/hr/user_data/hr/r0i0p0/v20250103/tas/tas_hr_UM-RA2T_Bias-correct_r0i0p0_197001031200-197001032100.nc
/tmp/user_data/user-runner/eur-11b/clex/UM-RA2T/Bias-correct/hr/user_data/hr/r0i0p0/v20250103/tas/tas_hr_UM-RA2T_Bias-correct_r0i0p0_197001030200-197001031100.nc
/tmp/user_data/user-runner/eur-11b/clex/UM-RA2T/Bias-correct/hr/user_data/hr/r0i0p0/v20250103/tas/tas_hr_UM-RA2T_Bias-correct_r0i0p0_197001021600-197001030100.nc
/tmp/user_data/user-runner/eur-11b/clex/UM-RA2T/Bias-correct/hr/user_data/hr/r0i0p0/v20250103/tas/tas_hr_UM-RA2T_Bias-correct_r0i0p0_197001020600-197001021500.nc
/tmp/user_data/user-runner/eur-11b/clex/UM-RA2T/Bias-correct/hr/user_data/hr/r0i0p0/v20250103/tas/tas_hr_UM-RA2T_Bias-correct_r0i0p0_197001012000-197001020500.nc
/tmp/user_data/user-runner/eur-11b/clex/UM-RA2T/Bias-correct/hr/user_data/hr/r0i0p0/v20250103/tas/tas_hr_UM-RA2T_Bias-correct_r0i0p0_197001011000-197001011900.nc
/tmp/user_data/user-runner/eur-11b/clex/UM-RA2T/Bias-correct/hr/user_data/hr/r0i0p0/v20250103/tas/tas_hr_UM-RA2T_Bias-correct_r0i0p0_197001010000-197001010900.nc

By default the data is copied. By using the how keyword you can also link or move the data.

delete(*paths: PathLike, delete_from_fs: bool = False) None#

Delete data from the databrowser.

The methods deletes user data from the databrowser.

Parameters:
  • *paths (os.PathLike) – Filename(s) or Directories that are going to be from the databrowser.

  • delete_from_fs (bool, default : False) – Do not only delete the files from the databrowser but also from their central location where they have been added to.

Raises:

ValidationError: – If crawl_dirs do not belong to current user.

Example

Any data in the central user directory that belongs to the user can be deleted from the databrowser and also from the central data location:

Code

from freva import UserData
user_data = UserData()
user_data.delete(user_data.user_dir)

Results


index(*crawl_dirs: PathLike, dtype: str = 'fs', continue_on_errors: bool = False, **kwargs: bool) None#

Index and add user output data to the databrowser.

This method can be used to update the databrowser for existing user data.

Parameters:
  • crawl_dirs – The data path(s) that needs to be crawled.

  • dtype – The data type, currently only files on the file system are supported.

  • continue_on_errors – Continue indexing on error.

Raises:

ValidationError: – If crawl_dirs do not belong to current user.

Example

If data has been removed from the databrowser it can be re added using the index method:

Code

from freva import UserData
user_data = UserData()
user_data.index()

Results

Status: crawling ...ok
property user_dir: Path#

Get the user data directory for the user.

Overriding or using a freva configuration#

If you want to install and maintain an instance of the freva client in your own python environment you will most likely have to load the freva configuration to be able to use the freva infrastructure. To do so you can use the freva.config class. This class allows you to either override or set the path to the freva configuration file.

class freva.config(config_file: str | Path | None = None, plugin_path: str | List[str] | None = None)#

Override the default or set the freva system configuration file.

With the help of this class you can not only (temporarily) override the default configuration file and use a configuration from another project, but you can also set a path to a configuration file if no configuration file has been set. Additionally you can set any plugin paths that are not part of the configuration file.

Parameters:
  • config_file (str | pathlib.Path, default: None) – Path to the (new) configuration file.

  • plugin_path (str | List[str], default: None) – New plugins that should be used, use a list of paths if you want export multiple plugins.

Examples

Temporarily override the existing configuration file and use a new one. You can use a context manager to temporally use a different configuration and switch back later.

import freva
with freva.config("/work/freva/evaluation_system.conf"):
    freva.run_plugin("plugin_from_another_project")

If you do not want to switch to another configuration only temporarily, but want to use it permanently, you can use freva.config without a context manager: a context manager:

import freva
freva.config("/work/freva/evaluation_system.conf")
files = sorted(freva.databrowser(project="user-1234", experiment="extremes"))

Import a new user defined plugin, for example if you have created a plugin called MyPlugin that is located in ~/freva/myplugin/plugin.py you would set to plugin_path='~/freva/my_plugin,plugin_module'.

import freva
freva.config(plugin_path="~/freva/my_plugin,plugin_module")
freva.run_plugin('MyPlugin", variable1=1, variable2="a")

In the same fashion you can set multiple plugin paths:

::

import freva freva.config(plugin_path=[“~/freva/my_plugin1,plugin_module_b”],

“~/ freva/my_plugin2,plugin_module_b”])

db_reloaded: List[bool] = [False]#

Searching for ESGF data#

Freva also allows to query for data in all the ESGF nodes. You have the following 5 methods:

Note

The collection of methods are derived from ESGF’s rest API. The query facets follow the syntax of the datasets hosted there (CMIP5, CORDEX, CMIP6, etc.) that might differ from freva.databrowser() and are case sensitive. They also have some special query keys, e.g.:

  • distrib: (true, false) search globally or only locally (e.g. at DKRZ, MPI data and replicas)

  • latest : (true, false, unset) search for the latest version, older ones or all.

  • replica: (true, false, unset) search only for replicas, non-replicas, or all.

Below you can find a more detailed documentation.

freva.esgf_browser(opendap: bool = False, gridftp: bool = False, **search_constraints: dict[str, str]) list[str]#

Find data in the ESGF.

The method queries the ESGF nodes for file URLs (default) or opendap/gridftp endpoints as well.

The key=value syntax follows that of freva.databrowser but the key names follow the ESGF standards for each dataset. Search of multiple values for the same key can be achieved either as a str concatenation (e.g.``frequency=”3hr,mon” `` with no space between variables) or as a list (e.g. frequency=["3hr", "mon"]).

Parameters:#

opendap: bool, default: False

List opendap endpoints instead of http ones.

gridftp: bool, default: False

Show gridftp endpoints instead of the http default ones (or skip them if none found)

**search_constraints: Union[str, Path, in, list[str]]

Search facets to be applied in the data search.

Returns:#

list :

Collection of files

Example

Similarly to freva.databrowser, freva.esgf_browser expects a list of key=value pairs in no particular order, but unlike the former it is case sensitive.

Given that your Freva instance is configured at DKRZ, if we want to search the URLs of all the files stored at the (DKRZ) local node (distrib=false) holding the latest version (latest=true) of the variable uas (variable=uas) for either 3hr or monthly time frequencies ( frequency=["3hr", "mon"]) and for a particular realization within the project CMIP6:

Code

import freva
files = freva.esgf_browser(
    mip_era="CMIP6",
    activity_id="ScenarioMIP",
    source_id="CNRM-CM6-1",
    institution_id="CNRM-CERFACS",
    experiment_id="ssp585",
    frequency="3hr,mon",
    variable="uas",
    variant_label="r1i1p1f2",
    distrib=False,
    latest=True,
)
print(f"{len(files) =}")
for file in files[:5]:
    print(file)

Results

len(files) =10
http://esgf3.dkrz.de/thredds/fileServer/cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/Amon/uas/gr/v20190219/uas_Amon_CNRM-CM6-1_ssp585_r1i1p1f2_gr_201501-210012.nc
http://esgf3.dkrz.de/thredds/fileServer/cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_201501010130-202412312230.nc
http://esgf3.dkrz.de/thredds/fileServer/cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_202501010130-203412312230.nc
http://esgf3.dkrz.de/thredds/fileServer/cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_203501010130-204412312230.nc
http://esgf3.dkrz.de/thredds/fileServer/cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_204501010130-205412312230.nc

In order to list the opendap endpoints (opendap=True):

Code

import freva
opendap = freva.esgf_browser(
    mip_era="CMIP6",
    activity_id="ScenarioMIP",
    source_id="CNRM-CM6-1",
    institution_id="CNRM-CERFACS",
    experiment_id="ssp585",
    frequency="3hr",
    variable="uas",
    variant_label="r1i1p1f2",
    distrib=False,
    latest=True,
    opendap=True,
)
print(opendap)

Results

['http://esgf3.dkrz.de/thredds/dodsC/cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_201501010130-202412312230.nc.html', 'http://esgf3.dkrz.de/thredds/dodsC/cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_202501010130-203412312230.nc.html', 'http://esgf3.dkrz.de/thredds/dodsC/cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_203501010130-204412312230.nc.html', 'http://esgf3.dkrz.de/thredds/dodsC/cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_204501010130-205412312230.nc.html', 'http://esgf3.dkrz.de/thredds/dodsC/cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_205501010130-206412312230.nc.html', 'http://esgf3.dkrz.de/thredds/dodsC/cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_206501010130-207412312230.nc.html', 'http://esgf3.dkrz.de/thredds/dodsC/cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_207501010130-208412312230.nc.html', 'http://esgf3.dkrz.de/thredds/dodsC/cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_208501010130-209412312230.nc.html', 'http://esgf3.dkrz.de/thredds/dodsC/cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_209501010130-210012312230.nc.html']

Or the gridftp endpoints instead (gridftp=True):

Results

['gsiftp://esgf3.dkrz.de:2811//cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_201501010130-202412312230.nc', 'gsiftp://esgf3.dkrz.de:2811//cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_202501010130-203412312230.nc', 'gsiftp://esgf3.dkrz.de:2811//cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_203501010130-204412312230.nc', 'gsiftp://esgf3.dkrz.de:2811//cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_204501010130-205412312230.nc', 'gsiftp://esgf3.dkrz.de:2811//cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_205501010130-206412312230.nc', 'gsiftp://esgf3.dkrz.de:2811//cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_206501010130-207412312230.nc', 'gsiftp://esgf3.dkrz.de:2811//cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_207501010130-208412312230.nc', 'gsiftp://esgf3.dkrz.de:2811//cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_208501010130-209412312230.nc', 'gsiftp://esgf3.dkrz.de:2811//cmip6/ScenarioMIP/CNRM-CERFACS/CNRM-CM6-1/ssp585/r1i1p1f2/E3hr/uas/gr/v20190219/uas_E3hr_CNRM-CM6-1_ssp585_r1i1p1f2_gr_209501010130-210012312230.nc']
freva.esgf_datasets(**search_constraints: dict[str, str]) list[tuple[str, str]]#

List the name of the datasets (and version) in the ESGF.

The method queries the ESGF nodes for dataset information. The key=value syntax follows that of freva.databrowser but the key names follow the ESGF standards for each dataset.

Parameters:#

**search_constraints: Union[str, Path, in, list[str]]

Search facets to be applied in the data search.

Returns:#

list[tuple[str, str]]:

list of (dataset_name, version_number) tuples

Example

List the datasets corresponding to a query of files stored at the (DKRZ) local node (distrib=false) holding the latest version (latest=true) for a particular realization within the project CMIP6:

Code

import freva
datasets = freva.esgf_datasets(
    mip_era="CMIP6",
    activity_id="ScenarioMIP",
    source_id="CNRM-CM6-1",
    institution_id="CNRM-CERFACS",
    experiment_id="ssp585",
    frequency="3hr",
    variable="uas",
    variant_label="r1i1p1f2",
    distrib=False,
    latest=True,
    )
print(f"{len(datasets) =}")
for dataset in datasets[:5]:
    print(dataset)

Results

len(datasets) =1
('CMIP6.ScenarioMIP.CNRM-CERFACS.CNRM-CM6-1.ssp585.r1i1p1f2.E3hr.uas.gr', 20190219)
freva.esgf_download(download_script: str | Path | None = None, **search_constraints: dict[str, str]) str | Path#

Create a script file to download the queried files at ESGF.

The method creates a bash script wrapper of a wget query from ESGF dataset(s) (only http).

Parameters:#

download_script: Union[str, Path], default: None

Download wget_script for getting the files instead of displaying anything (only http)

**search_constraints: Union[str, Path, in, list[str]]

Search facets to be applied in the data search.

Returns:#

Union[str, Path]:

wget_script to download the files (only http).

Example

Create a wget script to download the queried URLs:

Code

import freva
freva.esgf_download(project="CMIP5",
            experiment="decadal1960",
            variable="tas", distrib=False, latest=True,
            download_script="/tmp/script.get")

with open('/tmp/script.get', 'r') as f:
    content = f.readlines()
    print(" ".join(content[:10]))

Results

#!/bin/bash
 ##############################################################################
 # ESG Federation download script
 #
 # Template version: 1.2
 # Generated by esgf-data.dkrz.de - 2025/01/03 05:02:25
 # Search URL: https://esgf-data.dkrz.de/esg-search/wget?project=CMIP5&experiment=decadal1960&variable=tas&distrib=False&latest=True&type=File
 #
 ###############################################################################
 # first be sure it's bash... anything out of bash or sh will break

Note

You will need an OpenID account to download the data, for example here.

There is a ESGF PyClient as well.

freva.esgf_facets(show_facet: str | list[str] | None = None, **search_constraints: dict[str, str]) dict[str, list[str]]#

Search for data attributes (facets) through ESGF.

The method queries the ESGF nodes for available search facets (keys) like model, experiment etc. The key=value syntax follows that of freva.facet_search but the key names follow the ESGF standards for each dataset.

Parameters:#

show_facet: Union[str, list[str]], default: None

List all values for the given facet (might be defined multiple times). The results show the possible values of the selected facet according to the given constraints and the number of datasets (not files) that selecting such value as a constraint will result (faceted search)

**search_constraints: Union[str, Path, in, list[str]]

Search facets to be applied in the data search.

Returns:#

dict[str, list[str]]:

Collection of facets

Example

List the values of the attributes variable and time_frequency stored at the (DKRZ) local node (distrib=false) holding the latest version (latest=true) for a particular realization within the project CMIP6:

Code

import freva
facets = freva.esgf_facets(
    mip_era="CMIP6",
    activity_id="ScenarioMIP",
    source_id="CNRM-CM6-1",
    institution_id="CNRM-CERFACS",
    experiment_id="ssp585",
    distrib=False,
    latest=True,
    show_facet=["variable", "frequency"])
print(facets)

Results

{'variable': {'abs550aer': 6, 'agesno': 6, 'areacello': 6, 'baresoilFrac': 5, 'bigthetao': 6, 'bigthetaoga': 6, 'c3PftFrac': 1, 'c4PftFrac': 1, 'ccb': 6, 'cct': 6, 'ch4global': 6, 'ci': 6, 'cl': 6, 'cli': 6, 'clivi': 6, 'clt': 12, 'clw': 6, 'clwvi': 6, 'co2mass': 6, 'cropFrac': 6, 'cropFracC3': 6, 'cropFracC4': 6, 'evspsbl': 6, 'evspsblpot': 6, 'evspsblsoi': 6, 'evspsblveg': 6, 'ficeberg': 6, 'friver': 6, 'gpp': 6, 'grassFrac': 6, 'grassFracC3': 5, 'grassFracC4': 6, 'hcont300': 6, 'hfbasin': 6, 'hfbasinpmadv': 6, 'hfds': 6, 'hfdsn': 6, 'hfls': 7, 'hfss': 7, 'hfx': 6, 'hfy': 6, 'htovgyre': 5, 'htovovrt': 6, 'hur': 6, 'hurs': 11, 'hursmax': 6, 'hursmin': 6, 'hus': 13, 'hus850': 1, 'huss': 13, 'intuadse': 6, 'intuaw': 6, 'intvadse': 6, 'intvaw': 6, 'lai': 12, 'landCoverFrac': 1, 'lwp': 1, 'lwsnl': 6, 'masscello': 6, 'masso': 6, 'mc': 6, 'mfo': 6, 'mlotst': 6, 'mlotstmax': 6, 'mlotstmin': 6, 'mrfso': 6, 'mrlso': 6, 'mrro': 6, 'mrros': 6, 'mrsfl': 12, 'mrsll': 10, 'mrso': 12, 'mrsol': 12, 'mrsos': 6, 'mrtws': 6, 'msftyz': 6, 'n2oglobal': 6, 'npp': 6, 'nwdFracLut': 6, 'o3': 6, 'od550aer': 6, 'od550dust': 1, 'od550so4': 1, 'pbo': 6, 'pr': 8, 'prc': 12, 'prrc': 1, 'prsn': 11, 'prveg': 6, 'prw': 7, 'ps': 7, 'psl': 12, 'ptp': 6, 'ra': 6, 'residualFrac': 6, 'rivo': 6, 'rlds': 13, 'rldscs': 6, 'rls': 1, 'rlus': 12, 'rlut': 11, 'rlutaf': 6, 'rlutcs': 6, 'rlutcsaf': 6, 'rsds': 13, 'rsdscs': 6, 'rsdt': 6, 'rsntds': 6, 'rss': 1, 'rsus': 6, 'rsuscs': 5, 'rsut': 6, 'rsutaf': 6, 'rsutcs': 6, 'rsutcsaf': 6, 'sbl': 11, 'sfcWind': 7, 'sfcWindmax': 12, 'sfdsi': 6, 'siage': 1, 'siareaacrossline': 1, 'siarean': 1, 'siareas': 1, 'sicompstren': 1, 'siconc': 7, 'siconca': 2, 'sidconcdyn': 1, 'sidconcth': 1, 'sidmassdyn': 1, 'sidmassevapsubl': 1, 'sidmassgrowthbot': 1, 'sidmassgrowthwat': 1, 'sidmasslat': 1, 'sidmassmeltbot': 1, 'sidmassmelttop': 1, 'sidmasssi': 1, 'sidmassth': 1, 'sidmasstranx': 1, 'sidmasstrany': 1, 'sidragbot': 1, 'siextentn': 1, 'siextents': 1, 'sifb': 1, 'siflcondbot': 1, 'siflcondtop': 1, 'siflfwbot': 1, 'siflfwdrain': 1, 'sifllatstop': 1, 'sifllwutop': 1, 'siflsensupbot': 1, 'siflswdbot': 1, 'siflswdtop': 1, 'siflswutop': 1, 'sihc': 1, 'simass': 1, 'simassacrossline': 1, 'sipr': 1, 'sisali': 1, 'sisaltmass': 1, 'sisnconc': 1, 'sisnhc': 1, 'sisnmass': 1, 'sisnthick': 7, 'sispeed': 2, 'sistrxdtop': 1, 'sistrxubot': 1, 'sistrydtop': 1, 'sistryubot': 1, 'sitempbot': 1, 'sitempsnic': 1, 'sitemptop': 2, 'sithick': 7, 'sitimefrac': 2, 'siu': 6, 'siv': 7, 'sivol': 6, 'sivoln': 1, 'sivols': 1, 'sltbasin': 1, 'sltnortha': 1, 'sltovgyre': 5, 'sltovovrt': 6, 'snc': 12, 'snd': 6, 'sndmassdyn': 1, 'sndmassmelt': 1, 'sndmasssi': 1, 'sndmasssnf': 1, 'sndmasssubl': 1, 'snm': 6, 'snmassacrossline': 1, 'snw': 6, 'so': 6, 'sob': 6, 'soga': 6, 'sos': 6, 'sosga': 6, 't20d': 6, 'ta': 10, 'ta500': 1, 'ta850': 1, 'tas': 13, 'tasmax': 6, 'tasmin': 7, 'tauu': 6, 'tauuo': 6, 'tauv': 6, 'tauvo': 6, 'thetao': 6, 'thetaoga': 6, 'thetaot': 1, 'thkcello': 6, 'tntrl': 1, 'tob': 6, 'tos': 12, 'tosga': 6, 'tossq': 6, 'toz': 6, 'tpf': 6, 'tran': 6, 'treeFrac': 6, 'ts': 6, 'tsl': 6, 'tslsi': 1, 'tsn': 6, 'ua': 12, 'uas': 14, 'umo': 6, 'uo': 6, 'va': 12, 'vas': 14, 'vegFrac': 6, 'vmo': 6, 'vo': 5, 'volo': 6, 'wap': 6, 'wfo': 6, 'wmo': 6, 'wo': 6, 'wtd': 6, 'zg': 13, 'zg500': 1, 'zos': 6, 'zossq': 6, 'zostoga': 6, 'ztp': 6}, 'frequency': {'3hr': 8, '3hrPt': 4, '6hrPt': 4, 'day': 190, 'fx': 6, 'mon': 1053}}
freva.esgf_query(query: str | list[str] | None = None, **search_constraints: dict[str, str]) list[dict[str, list[str]]]#

Query fields from ESGF and group them per dataset

The method queries fields (e.g. facets) and groups them by dataset in a list of dictionaries.

Parameters:#

query:

Display results from <list> queried fields

**search_constraints:

Search facets to be applied in the data search.

Returns:#

list[dict[str, list[str]]]:

List of dictionaries with the queried elements for each dataset

Example:#

Show the key=value pair of selected elements for a search (e.g. query=["url","master_id","distribution","mip_era","activity_id","source_id","variable","product","version"]):

Code

import json, freva
queries = freva.esgf_query(
    mip_era="CMIP6",
    activity_id="ScenarioMIP",
    source_id="CNRM-CM6-1",
    institution_id="CNRM-CERFACS",
    experiment_id="ssp585",
    frequency="3hr",
    variant_label="r1i1p1f2",
    distrib=False,
    latest=True,
    query=["url","master_id","distribution",
        "mip_era","activity_id","source_id",
        "variable","product","version"],
)
print(json.dumps(queries[:2], indent=3))

Results

[
   {
      "version": "20190219",
      "activity_id": [
         "ScenarioMIP"
      ],
      "master_id": "CMIP6.ScenarioMIP.CNRM-CERFACS.CNRM-CM6-1.ssp585.r1i1p1f2.E3hr.vas.gr",
      "mip_era": [
         "CMIP6"
      ],
      "product": [
         "model-output"
      ],
      "source_id": [
         "CNRM-CM6-1"
      ],
      "url": [
         "http://esgf3.dkrz.de/thredds/catalog/esgcet/1586/CMIP6.ScenarioMIP.CNRM-CERFACS.CNRM-CM6-1.ssp585.r1i1p1f2.E3hr.vas.gr.v20190219.xml#CMIP6.ScenarioMIP.CNRM-CERFACS.CNRM-CM6-1.ssp585.r1i1p1f2.E3hr.vas.gr.v20190219|application/xml+thredds|THREDDS",
         "http://esgf3.dkrz.de/las/getUI.do?catid=649F6BBCDD98B0633CF0042D119CC69D_ns_CMIP6.ScenarioMIP.CNRM-CERFACS.CNRM-CM6-1.ssp585.r1i1p1f2.E3hr.vas.gr.v20190219|application/las|LAS"
      ],
      "variable": [
         "vas"
      ],
      "score": 1.0
   },
   {
      "version": "20190219",
      "activity_id": [
         "ScenarioMIP"
      ],
      "master_id": "CMIP6.ScenarioMIP.CNRM-CERFACS.CNRM-CM6-1.ssp585.r1i1p1f2.E3hr.prrc.gr",
      "mip_era": [
         "CMIP6"
      ],
      "product": [
         "model-output"
      ],
      "source_id": [
         "CNRM-CM6-1"
      ],
      "url": [
         "http://esgf3.dkrz.de/thredds/catalog/esgcet/1586/CMIP6.ScenarioMIP.CNRM-CERFACS.CNRM-CM6-1.ssp585.r1i1p1f2.E3hr.prrc.gr.v20190219.xml#CMIP6.ScenarioMIP.CNRM-CERFACS.CNRM-CM6-1.ssp585.r1i1p1f2.E3hr.prrc.gr.v20190219|application/xml+thredds|THREDDS",
         "http://esgf3.dkrz.de/las/getUI.do?catid=649F6BBCDD98B0633CF0042D119CC69D_ns_CMIP6.ScenarioMIP.CNRM-CERFACS.CNRM-CM6-1.ssp585.r1i1p1f2.E3hr.prrc.gr.v20190219|application/las|LAS"
      ],
      "variable": [
         "prrc"
      ],
      "score": 1.0
   }
]